FESTUCA RUBRA

INTRODUCCIÓN:

F. rubra L. (festuca roja) es una gramínea perenne, rizomatosa, que pertenece a la clase Monocotiledóneas, orden Poales, familia Poaceae y género Festuca. Esta gramínea tiene una amplia distribución circumboreal y es nativa de las zonas árticas y templadas de Europa, Asia y América, norte de África, así como de México y Nueva Zelanda. Por lo tanto, F. rubra se puede encontrar en diferentes regiones geográficas alrededor del mundo. F. rubra, se reproduce sexualmente mediante cruzamiento y vegetativamente, produciendo macollos intravaginales y extravaginales en los rizomas. Los clones de F. rubra poseen una considerable variabilidad genética y plasticidad. Las festucas rojas se cultivan y se utilizan como césped en céspedes ornamentales y deportivos, y algunos cultivares se han utilizado para la fitorremediación y rehabilitación de suelos dañados. Otras características de Festuca rubra es que establece asociaciones simbióticas tanto con hongos micorrícicos, que facilitan la absorción de nutrientes del suelo, como con hongos endófitos, entre los que destaca Epichloë festuca y en sistemas de praderas temporales, la combinación de F. rubra con leguminosas como Trifolium repens o Lotus corniculatus puede potenciar la fijación biológica de nitrógeno atmosférico. (Gajić et al., 2020) (Stojanova et al., 2018) (Toghueo et al., 2023).

FITORREMEDIACIÓN Y REHABILITACIÓN DE SUELOS DAÑADOS:

Festuca rubra ha demostrado una destacada tolerancia a suelos contaminados con metales pesados como Zn, Cd, Ni, Pb, Cr y Cu. Diversos estudios experimentales han confirmado que esta especie mantiene un crecimiento vegetativo aceptable incluso en

condiciones de alta contaminación, mostrando una notable capacidad de adaptación fisiológica al estrés inducido por metales (Pusz et al., 2021). Uno de los factores clave que respaldan esta tolerancia es su capacidad para limitar la translocación de metales hacia los órganos aéreos, reduciendo así el riesgo de toxicidad sistémica.

Un rasgo distintivo de *F. rubra* es su patrón de acumulación diferencial, con una marcada retención de metales en el sistema radicular. Este comportamiento se refleja en valores del factor de transferencia (TF) inferiores a 1 para la mayoría de los elementos analizados, lo que indica una limitada movilidad de los metales hacia las partes aéreas. Asimismo, los factores de bioconcentración (BCF) obtenidos para cadmio y zinc sugieren una absorción eficiente desde el suelo, especialmente en condiciones de contaminación moderada.

La combinación de una elevada acumulación radicular, bajo transporte a los tejidos fotosintéticos y producción estable de biomasa convierte a *Festuca rubra* en una especie adecuada para procesos de fitoestabilización, donde la contención de contaminantes en el perfil edáfico es prioritaria. Además, su vigor radicular contribuye a inmovilizar los metales y reducir su movilidad, minimizando el riesgo de lixiviación o incorporación en cadenas tróficas.

Complementariamente, el estudio de Gołda y Korzeniowska (2016) evaluó el comportamiento de *F. rubra* en suelos contaminados con diferentes concentraciones de cadmio (30, 60 y 120 mg·kg⁻¹), en comparación con otras gramíneas como Poa pratensis y Lolium perenne. Los resultados revelaron que *F. rubra* mostró una mejor tolerancia al cadmio que *Poa pratensis*, conservando mayor biomasa radicular y presentando una menor reducción del crecimiento en condiciones de contaminación elevada. Aunque no alcanzó la eficiencia de acumulación radicular de *Lolium perenne*, su desempeño en términos de estabilidad fisiológica, resistencia al estrés y eficiencia en la inmovilización del metal en raíces fue notable.

Los valores del factor de bioacumulación en raíces (BF-root > 1) y el bajo TF (0.02–0.10) obtenidos en dicho estudio confirman su idoneidad para la fitoestabilización de suelos con contaminación moderada a alta por cadmio. Este perfil fitoestabilizador sugiere que *Festuca rubra* puede desempeñar un papel crucial en la mitigación del riesgo ambiental en áreas afectadas por metales pesados, limitando su movilidad y biodisponibilidad.

Adicionalmente, investigaciones recientes han demostrado que *F. rubra* mantiene un valor calorífico constante (15.9–16.8 MJ·kg⁻¹) incluso en suelos contaminados con Ni²⁺, Co²⁺ y Cd²⁺, lo cual habilita su biomasa aérea para la generación de bioenergía sin detrimento de su eficiencia energética (Wyszkowska et al., 2022). Esta capacidad,

sumada a su comportamiento fitoestabilizador, refuerza su rol como especie estratégica en la rehabilitación de sitios contaminados. El uso combinado de compost como enmienda orgánica no solo mejora la tolerancia de la planta al cobalto, sino que además contribuye a restaurar las propiedades microbiológicas, enzimáticas y fisicoquímicas del suelo, potenciando así un enfoque de fitorremediación asistida integral.

En conjunto, estos atributos posicionan a *Festuca rubra* como una especie vegetal clave en programas de recuperación ecológica y aprovechamiento energético de suelos industriales o agrícolas afectados por contaminación metálica. Su bajo requerimiento nutricional, alta resiliencia a condiciones adversas y compatibilidad con estrategias de manejo sostenible del suelo la convierten en un recurso versátil para la restauración de ecosistemas degradados.

ASOCIACIONES CON HONGOS MICORRIZICOS:

La especie *Festuca rubra*, ampliamente distribuida en praderas de montaña de alto valor natural, presenta una clara tendencia a establecer asociaciones simbióticas con hongos micorrízicos arbusculares. Esta relación responde principalmente a las condiciones oligotróficas características de estos ecosistemas, donde la baja disponibilidad de nutrientes, especialmente fósforo y nitrógeno, promueve la simbiosis como estrategia de adaptación y supervivencia (Corcoz et al., 2022).

Los resultados obtenidos en el estudio de Corcoz et al., 2022 revelan que *F. rubra* exhibe una tasa de aceptación micorrízica nativa superior al 50%, con una colonización fúngica que se manifiesta principalmente a través del desarrollo de hifas intraradicales. Aunque la formación de arbúsculos fue relativamente baja (máximo del 5%), su presencia fue consistente en raíces con un grado de colonización superior al 25%, lo que sugiere una estrategia simbiótica dual centrada en el establecimiento de redes hifales y estructuras de intercambio bajo condiciones favorables.

Además de mejorar la eficiencia en la absorción de nutrientes, la simbiosis micorrízica en *F. rubra* contribuye significativamente a la estabilidad de las comunidades vegetales. Los hongos micorrízicos regulan la competencia interespecífica mediante una redistribución diferencial de nutrientes, favoreciendo a las especies dominantes y limitando el establecimiento de especies invasoras. Este papel regulador ha sido ampliamente documentado como un mecanismo clave para la persistencia de especies perennes en sistemas pastoriles biodiversos.

Asimismo, la alta diversidad fúngica asociada a *F. rubra*, que incluye géneros como Glomus, Scutellospora, Gigaspora, Paraglomus y Archaeospora, refleja una notable

plasticidad simbiótica y capacidad de adaptación a diferentes condiciones edáficas. Por todo ello, esta especie constituye un modelo vegetal idóneo para evaluar el funcionamiento simbiótico en praderas naturales y para monitorear el impacto de prácticas de manejo agronómico sobre la salud del suelo.

En esta línea, Stoian et al. (2014) demostraron que la colonización micorrízica en *F. rubra* está fuertemente influenciada por los insumos nutritivos y, en menor medida, por los factores climáticos. Durante la fase inicial del crecimiento vegetativo, la fertilización orgánica con estiércol favoreció significativamente los parámetros de colonización, mientras qué en etapas posteriores, las combinaciones de fertilizantes químicos que contenían nitrógeno mostraron un efecto más positivo. La estabilidad de la colonización en el tiempo se logró mediante una fertilización equilibrada, ya sea orgánica o mineral, siendo el nitrógeno el elemento con mayor impacto sobre la frecuencia, intensidad y grado de colonización. Estos hallazgos subrayan la sensibilidad de la simbiosis micorrízica a las prácticas de manejo agronómico y resaltan la importancia de estrategias de fertilización adaptadas para preservar la funcionalidad simbiótica en ecosistemas de pastizales.

FIJACIÓN DE NIRÓGENO DE FESTUCA RUBRA.

La fijación de nitrógeno en *Festuca rubra* no ocurre directamente, ya que esta gramínea no fija nitrógeno atmosférico por sí sola. Sin embargo, puede contribuir a la fijación biológica de nitrógeno de manera indirecta cuando se cultiva en asociación con leguminosas.

Trifolium repens (trébol blanco) fija nitrógeno atmosférico (N₂) mediante una simbiosis con bacterias del género *Rhizobium*, específicamente *Rhizobium leguminosarum bv. trifolii*. Este proceso ocurre en los nódulos radiculares, donde las bacterias convierten el nitrógeno gaseoso en formas disponibles para la planta, como el amonio (NH₄⁺), que es posteriormente incorporado en compuestos orgánicos nitrogenados utilizados por la planta para su crecimiento. (Burchill et al., 2014)

La asociación de *Festuca rubra* con leguminosas como *Trifolium repens* constituye una estrategia eficaz para incrementar la sostenibilidad y productividad de praderas temporales. En este tipo de mezclas, *F. rubra* actúa como especie estructural dominante, mientras que *T. repens* aporta la capacidad de fijación biológica de nitrógeno (NFB) mediante su simbiosis con bacterias del género *Rhizobium*. En el estudio de Cristea et al. (2013), se evaluó una mezcla compuesta por un 60% de F. rubra y un 40% de *T. repens*, cuyo rendimiento fue comparado con otras combinaciones que incluían *Lotus corniculatus*.

Los resultados indicaron que esta mezcla puede fijar entre 14,03 y 20,01 kg N/ha/año en ausencia de fertilización nitrogenada, gracias a la actividad simbiótica de *T. repens*. Aproximadamente entre el 20% y el 30% del nitrógeno fijado por la leguminosa se transfiere a la gramínea asociada, principalmente a través de la descomposición de raíces y residuos vegetales, lo cual mejora significativamente la nutrición nitrogenada de *F. rubra*. Este proceso permite cubrir hasta el 50% de las necesidades de nitrógeno del sistema, reduciendo la dependencia de insumos minerales y favoreciendo una producción forrajera más equilibrada y respetuosa con el medio ambiente.

La combinación de estas especies no solo mejora la eficiencia en el uso del nitrógeno, sino que también contribuye al incremento de la biomasa total y a la estabilidad funcional del agroecosistema, posicionando a *F. rubra–T. repens* como una mezcla óptima para el establecimiento de sistemas forrajeros sostenibles.

Además de beneficiarse del nitrógeno fijado por las leguminosas, Festuca rubra presenta mecanismos fisiológicos propios para optimizar la utilización del nitrógeno disponible en el sistema. En situaciones de defoliación o estrés por baja disponibilidad fotosintética —como ocurre bajo condiciones de CO₂ reducido— esta especie moviliza internamente el nitrógeno almacenado en tejidos maduros, particularmente desde hojas senescentes y raíces, hacia órganos en desarrollo. Este proceso de redistribución interna se basa en la degradación de proteínas, como la Rubisco, en los tejidos más antiguos. Sin embargo, cuando la capacidad fotosintética se ve severamente limitada, como bajo deficiencia de CO₂, esta degradación proteica se inhibe, afectando la liberación y reutilización de nitrógeno. Aun así, se ha observado que la movilización desde las raíces hacia los brotes continúa activa, lo que sugiere una regulación diferenciada entre absorción exógena y redistribución endógena. Esta plasticidad funcional permite a F. rubra mantener su crecimiento bajo condiciones de limitación externa de nitrógeno, especialmente cuando se combina con el aporte simbiótico de leguminosas, consolidando su rol en sistemas forrajeros resilientes y con bajo requerimiento de insumos. (Thornton et al., 2002)

MANEJO DEL GANADO CON FESTUCA RUBRA

Como ya se ha señalado anteriormente en este artículo la aplicación de fertilizantes orgánicos, como el estiércol, mejora significativamente la colonización micorrízica en raíces de *F. rubra*, especialmente durante los primeros ciclos vegetativos (Stoian et al., 2014). Este tipo de fertilización incrementa la biomasa, la capacidad de absorción de nutrientes y la resiliencia del sistema radicular, sin los efectos negativos asociados al uso excesivo de nitrógeno químico. A largo plazo, se ha observado una mejora en la

actividad enzimática del suelo y una mayor estabilidad de las comunidades microbianas beneficiosas (Wyszkowska et al., 2022).

Diversos estudios han resaltado la importancia de un manejo ganadero adecuado en pastizales dominados por *Festuca rubra*. En particular, Haynes (1980) advierte que esta especie muestra una sensibilidad significativa a la intensidad y frecuencia del pastoreo, observándose reducciones en la cobertura vegetal bajo esquemas de defoliación continua o excesiva. No obstante, cuando el manejo incluye periodos de descanso entre eventos de pastoreo, F. rubra conserva su vigor y capacidad de rebrote, lo cual resulta fundamental para sostener su productividad. Además, la combinación de cargas ganaderas intermedias con estrategias como el reciclaje de nutrientes y la fertilización orgánica favorece la resiliencia del sistema, optimizando tanto la recuperación foliar como la funcionalidad del pastizal. Los resultados reportados por Thornton et al. (2002) indican que Festuca rubra presenta una adecuada tolerancia al pastoreo, siempre que se le proporcione un período de recuperación posterior que permita la movilización de recursos internos y la regeneración del tejido fotosintético. Esta capacidad de remobilización de nitrógeno, particularmente desde las raíces y hojas maduras hacia los órganos en crecimiento tras la defoliación, respalda la implementación de sistemas de pastoreo rotacional con descansos adecuados. Dicho manejo favorece el rebrote, conserva la funcionalidad fisiológica de la planta y contribuye a mantener la productividad a largo plazo del pastizal.

CONCLUSIONES:

Festuca rubra reúne una serie de características agroecológicas que la posicionan como una especie altamente prometedora para su integración en sistemas de dehesa. Su alta tolerancia a suelos pobres, ácidos o incluso contaminados, junto con su capacidad para establecer simbiosis con hongos micorrízicos y endófitos, le permite adaptarse y mantenerse productiva en condiciones edáficas limitantes, comunes en muchas dehesas mediterráneas.

Asimismo, aunque no fija nitrógeno directamente, su asociación con leguminosas como *Trifolium repens* contribuye de manera indirecta a mejorar la fertilidad del suelo mediante la fijación biológica de nitrógeno. Esta funcionalidad se complementa con su capacidad de movilizar internamente nitrógeno desde tejidos senescentes tras el pastoreo, lo que refuerza su resiliencia bajo esquemas de carga ganadera controlada.

Además, *F. rubra* ha demostrado un buen desempeño bajo fertilización orgánica, pastoreo rotacional y cargas ganaderas intermedias, lo que coincide con los principios

del manejo sostenible en la dehesa. Su vigor radicular y su capacidad de acumulación diferencial de metales pesados en raíces la hacen también adecuada para zonas marginales o degradadas dentro del ecosistema, donde puede contribuir a la restauración de suelos y a la prevención de procesos erosivos.

En conjunto, estas cualidades hacen de *Festuca rubra* una opción estratégica para diversificar, estabilizar y mejorar la productividad y sostenibilidad de las dehesas, tanto en términos forrajeros como en la conservación de la funcionalidad del suelo.

REFERENCIAS:

Burchill, W., James, E. K., Li, D., Lanigan, G. J., Williams, M., Iannetta, P. P. M., & Humphreys, J. (2014). Comparisons of biological nitrogen fixation in association with white clover (Trifolium repens L.) under four fertiliser nitrogen inputs as measured using two ¹⁵N techniques. Plant and Soil, 385(1–2), 287–302. https://doi.org/10.1007/s11104-014-2199-1

Corcoz, L., Păcurar, F., Pop-Moldovan, V., Vaida, I., Stoian, V., & Vidican, R. (2022). Mycorrhizal patterns in the roots of dominant Festuca rubra in a high-natural-value grassland. Plants, 11(1), 112. https://doi.org/10.3390/plants11010112

Cristea, T., Cristea, C., Dragomir, N., Carciu, G., Alda, S., & Alda, L. (2013). Biological fixation of the nitrogen (NFB) in the temporary grasslands with Festuca rubra L. Review on Agriculture and Rural Development, 2(1), 190–194.

Gajić, G., Mitrović, M., & Pavlović, P. (2020). Feasibility of Festuca rubra L. native grass in phytoremediation. Phytoremediation potential of perennial grasses, 115-164.

Gołda, S., & Korzeniowska, J. (2016). Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environmental Protection and Natural Resources, 27(1), 8–14. https://doi.org/10.1515/oszn-2016-0003

Haynes, R. J. (1980). Competitive aspects of the grass-legume association. Advances in Agronomy, 33, 227–261. https://doi.org/10.1016/S0065-2113(08)60158-6

Pusz, A., Wiśniewska, M., & Rogalski, D. (2021). Assessment of the accumulation ability of Festuca rubra L. and Alyssum saxatile L. tested on soils contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources, 10(5), 46. https://doi.org/10.3390/resources10050046

Stoian, V., Vidican, R., Rotar, I., Păcurar, F., & Niste, M. (2014). Mycorrhizal colonization in Festuca rubra under the influence of climatic factors and differentiated fertilization. ProEnvironment, 7, 96–102.

Stojanova, B., Šurinová, M., Klápště, J., Koláříková, V., Hadincová, V., & Münzbergová, Z. (2018). Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PloS one, 13(4), e0194670. https://doi.org/10.1371/journal.pone.0194670

Thornton, B., Paterson, E., Kingston-Smith, A. H., Bollard, A. L., Pratt, S. M., & Sim, A. (2002). Reduced atmospheric CO₂ inhibits nitrogen mobilization in Festuca rubra. Physiologia Plantarum, 116(1), 62–72. https://doi.org/10.1034/j.1399-3054.2002.1160108.x

Toghueo, R. M. K., Vázquez de Aldana, B. R., & Zabalgogeazcoa, I. (2023). Dia porthe species associated with the maritime grass Festuca rubra subsp. pruinosa. Frontiers in microbiology, 14, 1105299. https://doi.org/10.3389/fmicb.2023.1105299

Wyszkowska, J., Boros-Lajszner, E., & Kucharski, J. (2022). Calorific value of Festuca rubra biomass in the phytostabilization of soil contaminated with nickel, cobalt and cadmium which disrupt the microbiological and biochemical properties of soil. Energies, 15(9), 3445. https://doi.org/10.3390/en15093445